Перевод: со всех языков на все языки

со всех языков на все языки

в самородном виде

  • 1 в самородном виде

    Универсальный русско-английский словарь > в самородном виде

  • 2 in native condition

    English-Russian mining dictionary > in native condition

  • 3 in native state

    English-Russian mining dictionary > in native state

  • 4 висмут

    1. bismuth

     

    висмут
    Bi

    Элемент V группы Периодич. системы; ат. н. 83, ат. м. 208,980; серебристо-серый металл с розоватым оттенком. Природный Bi состоит из одного стабильного изотопа 209Bi.
    Содержание Bi в земной коре 2 • 10~5 мас. %, встречается в самородном виде и в виде соединений с кислородом (бисмит Bi2O3), с серой (висмутовый блеск Bi2S3), теллуром (тетрадимит Bi2Te2S). В большом кол-ве, но в малых концентрациях Bi встречается как изоморфная примесь в Pb-Zn-, Cu-, Mo-Co и Sn-W-рудах.
    Bi имеет ромбоэдрич. решетку с периодом а = 0,47457 нм и углом а = 57° 14'13"; у = = 9,80 г/см3; /1И= 271,3 оС, /.„,, = 1560 оС; С2(ГС = 123,5 ДжДкг • К); а20.с = 1 3,3 • 10"'; Х20.с= 8,37 Вт/(м • К); рм.с= 106,8 • 10~8 Ом • м. Bi - самый диамагнитный металл. Уд. магнитная восприимчивость х = 1,35 • 10"' А/м. При комн. темп-ре Bi хрупок, но при 120—150 °С может подвергаться пластич. деформации; горячим прессованием (при 240—250 °С) из него можно изготовить проволоку диаметром до 0,1 мм, а также полосу толщиной 0,2—0,3 мм; тв. по Бринеллю измеряется в пределах 72— 93 МПа. При плавлении Bi уменьшается в объеме на 3,27 %.
    В сухом виде Bi устойчив, во влажном постепенно покрывается буроватой пленкой оксидов. Заметное окисление начинается с 500 оС. Выше 1000 оС Bi горит голубоватым пламенем с образованием Bi2O3; не реагирует с Н2, С, N2, Si. С большинством металлов при сплавлении образует интерметаллич. соединения - висмутиды, напр. Na3Bi, Mg3Bi.
    Bi не реагирует с НСl и разбавл. H2SO4; с HN03 образует нитрат. Соли Bi легко гидро-лизуются.
    Около 90 % мирового потребления Bi покрывается его попутной добычей при переработке полиметаллич. руд. В свинцовом производстве Bi получают по классич. схеме: агломерирующий обжиг концентратов, шахтная восстановительная плавка свинцового Bi-содержащего агломерата с извлечением из чернового свинца (стадия обезвисмучива-ния) с выделением Bi в дроссы (висмутовые съемы) и затем электролитич. разделение висмутистого свинца с получением шла-мов и рафиниров. Bi. При плавке Cu-Bi- концентратов Bi концентрируется в пылях плавильных печей и конвертеров, из к-рых его извлекают восстановительной плавкой содой и углем. Cu-Bi-концентраты перерабатываются также гидрометаллургич. способом. Выщелачивание проводится при 105 °С НСl или H2SO4 с добавл. хлоридов металлов. Bi выделяют из р-ров либо гидролитич. осаждением в виде окси- или гидрооксихлоридов, либо восстановлением железом в виде металла (цементация). Идя отделения Bi от сопутств. металлов могут быть использованы экстракция или ионный обмен.
    Извлечение Bi в свинцовом произ-ве составляет 86—95 %, в медном и оловянном — 73—80 %. Собственно Bi-концентраты (содер-жащ. обычно 3-5 мае. %, в редких случаях до 6 %) получают обогащением висмутовых руд флотацией и др. способами. Перерабатывают концентраты путем восстановительной плавки с добавлением металлич. железа. Известны содовая плавка, а также щелочная с NaOH.
    Рафинирование Bi заключается в после-доват. обработке его расплавл. серой с добавл. угля (для удаления Fe и Сu); щелочью с добавл. окислителя или продувкой воздухом (для удаления Ag, Sb и Sn); цинком (для удаления Аu и Ag) и др. Применяют также электролитич. рафинирование как в водных р-рах BiCl2, Bi2(SiF6)3, так и в солевых расплавах. Для получения Bi высокой чистоты (не менее Ю"6— 10"'°%) используют комбинацию разных методов: электролиз, электрорафинирование с твердыми электродами в электролитах разной природы, методы дистилляции в глубоком вакууме, кристаллофиз. методы и пирометал-лургич. процессы, включающие хлорирование, обработку щелочами и др. реагентами, а также электрохим. переработку Bi-содержащих сплавов в ионных расплавах.
    Значит, кол-во Bi идет для получения легкоплавких сплавов, содержащих Pb, Sn, Cd (см., напр., Сплав Вуда), к-рые применяют в зубоврачебном протезировании, для изготовл. клише, в автоматич. противопожарных устр-вах и т.п. Быстро увеличивается потребление Bi в соединениях с Те для термоэлектрогенераторов. Добавка Bi к нерж. сталям улучшает их обрабатываемость резанием. Соединения Bi применяют в стекловарении и эмалировании. Наиб, кол-во Bi потребляет фармацевтическая пром-сть для изготовл. обеззараж. и подсушивающих средств.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > висмут

  • 5 bismuth

    1. висмут

     

    висмут
    Bi

    Элемент V группы Периодич. системы; ат. н. 83, ат. м. 208,980; серебристо-серый металл с розоватым оттенком. Природный Bi состоит из одного стабильного изотопа 209Bi.
    Содержание Bi в земной коре 2 • 10~5 мас. %, встречается в самородном виде и в виде соединений с кислородом (бисмит Bi2O3), с серой (висмутовый блеск Bi2S3), теллуром (тетрадимит Bi2Te2S). В большом кол-ве, но в малых концентрациях Bi встречается как изоморфная примесь в Pb-Zn-, Cu-, Mo-Co и Sn-W-рудах.
    Bi имеет ромбоэдрич. решетку с периодом а = 0,47457 нм и углом а = 57° 14'13"; у = = 9,80 г/см3; /1И= 271,3 оС, /.„,, = 1560 оС; С2(ГС = 123,5 ДжДкг • К); а20.с = 1 3,3 • 10"'; Х20.с= 8,37 Вт/(м • К); рм.с= 106,8 • 10~8 Ом • м. Bi - самый диамагнитный металл. Уд. магнитная восприимчивость х = 1,35 • 10"' А/м. При комн. темп-ре Bi хрупок, но при 120—150 °С может подвергаться пластич. деформации; горячим прессованием (при 240—250 °С) из него можно изготовить проволоку диаметром до 0,1 мм, а также полосу толщиной 0,2—0,3 мм; тв. по Бринеллю измеряется в пределах 72— 93 МПа. При плавлении Bi уменьшается в объеме на 3,27 %.
    В сухом виде Bi устойчив, во влажном постепенно покрывается буроватой пленкой оксидов. Заметное окисление начинается с 500 оС. Выше 1000 оС Bi горит голубоватым пламенем с образованием Bi2O3; не реагирует с Н2, С, N2, Si. С большинством металлов при сплавлении образует интерметаллич. соединения - висмутиды, напр. Na3Bi, Mg3Bi.
    Bi не реагирует с НСl и разбавл. H2SO4; с HN03 образует нитрат. Соли Bi легко гидро-лизуются.
    Около 90 % мирового потребления Bi покрывается его попутной добычей при переработке полиметаллич. руд. В свинцовом производстве Bi получают по классич. схеме: агломерирующий обжиг концентратов, шахтная восстановительная плавка свинцового Bi-содержащего агломерата с извлечением из чернового свинца (стадия обезвисмучива-ния) с выделением Bi в дроссы (висмутовые съемы) и затем электролитич. разделение висмутистого свинца с получением шла-мов и рафиниров. Bi. При плавке Cu-Bi- концентратов Bi концентрируется в пылях плавильных печей и конвертеров, из к-рых его извлекают восстановительной плавкой содой и углем. Cu-Bi-концентраты перерабатываются также гидрометаллургич. способом. Выщелачивание проводится при 105 °С НСl или H2SO4 с добавл. хлоридов металлов. Bi выделяют из р-ров либо гидролитич. осаждением в виде окси- или гидрооксихлоридов, либо восстановлением железом в виде металла (цементация). Идя отделения Bi от сопутств. металлов могут быть использованы экстракция или ионный обмен.
    Извлечение Bi в свинцовом произ-ве составляет 86—95 %, в медном и оловянном — 73—80 %. Собственно Bi-концентраты (содер-жащ. обычно 3-5 мае. %, в редких случаях до 6 %) получают обогащением висмутовых руд флотацией и др. способами. Перерабатывают концентраты путем восстановительной плавки с добавлением металлич. железа. Известны содовая плавка, а также щелочная с NaOH.
    Рафинирование Bi заключается в после-доват. обработке его расплавл. серой с добавл. угля (для удаления Fe и Сu); щелочью с добавл. окислителя или продувкой воздухом (для удаления Ag, Sb и Sn); цинком (для удаления Аu и Ag) и др. Применяют также электролитич. рафинирование как в водных р-рах BiCl2, Bi2(SiF6)3, так и в солевых расплавах. Для получения Bi высокой чистоты (не менее Ю"6— 10"'°%) используют комбинацию разных методов: электролиз, электрорафинирование с твердыми электродами в электролитах разной природы, методы дистилляции в глубоком вакууме, кристаллофиз. методы и пирометал-лургич. процессы, включающие хлорирование, обработку щелочами и др. реагентами, а также электрохим. переработку Bi-содержащих сплавов в ионных расплавах.
    Значит, кол-во Bi идет для получения легкоплавких сплавов, содержащих Pb, Sn, Cd (см., напр., Сплав Вуда), к-рые применяют в зубоврачебном протезировании, для изготовл. клише, в автоматич. противопожарных устр-вах и т.п. Быстро увеличивается потребление Bi в соединениях с Те для термоэлектрогенераторов. Добавка Bi к нерж. сталям улучшает их обрабатываемость резанием. Соединения Bi применяют в стекловарении и эмалировании. Наиб, кол-во Bi потребляет фармацевтическая пром-сть для изготовл. обеззараж. и подсушивающих средств.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > bismuth

  • 6 иридий

    en\ \ iridium
    de\ \ Iridium
    fr\ \ \ iridium
    элемент №77 периодической системы Д.И.Менделеева (VIII группа, 6 период), атомная масса 192,2; известны 31 изотоп с массовыми числами 168—198, типичные степени окисления +III, +IV, +VI; тяжелый серебристо-белый, очень твердый и хрупкий металл, устойчив к химическим воздействиям: нерастворим в кислотах и царской водке; Tпл 2683 К; принадлежит к платиновым металлам; в самородном виде встречается редко, чаще в виде осмистого иридия; происхождение названия — от греч. iris радуга; открыт в 1804 году С.Теннантом (Великобритания); применяют как катализатор в органическом синтезе, в качестве компонента сплавов с платиной и осмием (электроды, термометры, твердые наконечники, хирургические инструменты, детали для часов и др), для изготовление тиглей, как защитное коррозионностойкое покрытие, для изготовления слаботочных контактов и др.

    Терминологический словарь "Металлы" > иридий

  • 7 in native condition

    Горное дело: в самородном виде

    Универсальный англо-русский словарь > in native condition

  • 8 in native state

    Горное дело: в самородном виде

    Универсальный англо-русский словарь > in native state

  • 9 палладий

    en\ \ palladium
    de\ \ Palladium
    fr\ \ \ palladium
    элемент №46 периодической системы Д.И.Менделеева (VIII группа, 5 период), атомная масса 106,4; известны 22 изотопа с массовыми числами 97—118; типичные степени окисления +II, +IV; серебристо-белый мягкий металл; относится к платиновым металлам; наиболее низкоплавкий из всех платиновых металлов (температура плавления 1827 К), в химическом отношении напоминает платину, растворяется в концентрированной HNO3; интенсивно поглощает водород; в природе встречается, в основном, в самородном состоянии, а также в сплавах с металлами платиновой группы и в виде химических соединений; происхождение названия — в честь богини Паллады; открыт в 1803 году У.Лолластоном (Великобритания); применяют в химической промышленности, как катализатор в органическом синтезе, для изготовления терморегуляторов, термопар, электрических контактов, ювелирных изделий, как компонент сплавов с платиновыми металлами и др.

    Терминологический словарь "Металлы" > палладий

  • 10 ртуть

    en\ \ mercury
    fr\ \ \ mercure
    элемент №80 периодической системы Д.И.Менделеева (II группа, 6 период), атомная масса 200,59; известны 30 изотопов с массовыми числами 177—206, типичные степени окисления +II, +I; тяжелый блестящий жидкий металл, Tпл 234 К, заметно испаряется уже при комнатной температуре; пары ядовиты; химически малоактивна, растворяется в концентрированной азотной и серной кислотах, а также в царской водке; растворяет некоторые металлы (золото, серебро, цинк, свинец и др.), образуя амальгамы; в природе распространена мало, чаще встречается в виде минерала сульфида ртути (киновари), иногда в самородном состоянии; происхождение названия — от греч. hudorвода и agtyros — серебро, жидкое серебро; известна с древних времен; применяют во многих приборах (термометры, барометры, реле, осветительные лампы), для изготовления катодов в электрохимическом производстве щелочей и хлора, в электротехнике, в взрывчатых веществах и др.

    Терминологический словарь "Металлы" > ртуть

См. также в других словарях:

  • Драгоценные металлы — (Precious metals) Драгоценные металлы это редко встречающиеся металлы, которые отличаются блеском, красотой и стойкостью к коррозии История добычи драгоценных металлов, разновидности, свойства, применение, распространение в природе, сплавы… …   Энциклопедия инвестора

  • Палладий — (Palladium) Палладий это один из элементов таблицы Менделеева, входящий в платиновую группу История открытия палладия и его нахождение в природе, биологические, химические и физические свойства палладия, применение палладия в ювелирной… …   Энциклопедия инвестора

  • Серебро — (Silver) Определение серебра, добыча серебра, свойства серебра Информация об определении серебра, добыча серебра, свойства серебра Содержание Содержание История Открытие. Добыча Названия от слова Возможна нехватка серебра и рост История столового …   Энциклопедия инвестора

  • Медь — 29 Никель ← Медь → Цинк …   Википедия

  • Золото — с, часто с опред., указывающим на цвет, форму или размер золотин, пробность, способ добычи и т.д. Благородный металл желтого цвета, обладающий большой гибкостью, ковкостью и тягучестью, в основном встречающийся в самородном виде и в кварцевых… …   Словарь золотого промысла Российской Империи

  • Самородные элементы — Серебро самородное в кварце. Размер 5 x 3 см Самородные элементы класс единой кристаллохимической классификации минералов (подроб …   Википедия

  • Е174 — Серебро / Argentum (Ag) Атомный номер 47 Внешний вид простого вещества Свойства атома Атомная масса (молярная масса) 107,8682 а. е. м. (г/моль) …   Википедия

  • Серебро — У этого термина существуют и другие значения, см. Серебро (значения). 47 Палладий ← Серебро → Кадмий …   Википедия

  • Купрум — Медь / Cuprum (Cu) Атомный номер 29 Внешний вид простого вещества пластичный металл золотисто розового цвета Свойства атома Атомная масса (молярная масса) 63,54 …   Википедия

  • Минерал — (Mineral) Характеристика и классификация минерала Физические и химические свойства минералов, применение минералов Содержание Содержание Раздел 1. Определение. Раздел 2. Классификация минералов. Раздел 3. Структура и химический состав минералов.… …   Энциклопедия инвестора

  • СЕРЕБРО — Ag (argentum), химический элемент IB подгруппы периодической системы элементов, благородный металл, не подверженный коррозии в обычных условиях. Это красивый белый (в проходящем свете голубой) мягкий, удобный для обработки металл, с древности… …   Энциклопедия Кольера

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»